Elementary Number Theory Final Exam

Date: 01 November 2022

Place: Exam Hall 1, Aletta Jacobs Hall

Time: 08:30-10:30

Instructions

- To get full points, you must provide complete arguments and computations. You will get no points if you do not explain your answer. Answers like " 34 ", "Yes", "No" will not be accepted.
- While solving a problem, you can use any statement that needs to be proven as a part of another problem even if you did not manage to prove it; e.g. you can use part (a) while solving part (b) even if you did not prove (a). (In questions 2 and 3, the sub-problems are independent.)
- Clearly write your name and student number on each page you submit.
- The examination consists of 7 questions. You can score up to 36 points and you get 4 points for free. This way you will score in total between 4 and 40 points.

Problems

1 (4 points) Find all integers x such that $x^{5}+3 x \equiv-1(\bmod 135)$. (Note that $135=5 \cdot 3^{3}$.)
2 (a) (3 points) Prove that $437 \mid 18!+1$. (Note that $437=19 \cdot 23$.)
(b) (3 points) Prove that $385 \mid n^{60}-1$ if n is not divisible by $5,7,11$. (Note that $385=5 \cdot 7 \cdot 11$.)

53 Recall that $\phi(n)$ denotes the Euler's phi function; $\sigma(n)$ denotes the sum of divisors of $n ; \tau(n)$ denotes the number of divisors of $n ; \mu(n)$ denotes the Möbius function.
(a) (3 points) Show that $\phi(n)>\sqrt{n} / 2$ for all positive integers. Use this to conclude that the equation $\phi(n)=k$ has only a finite number of solutions for a fixed k.
(b) (3 points) Define $F(n)=\sum_{d \mid n} \mu(d) \sigma(d)$. Compute $F(12!)$.
(c) (3 points) Prove that $\tau(n)$ is an odd integer if and only if n is a perfect square.

4 (3 points) Show that 3 is a primitive root for every prime $p=2^{n}+1$, where $n>1$.
5 (3 points) Let p and q be odd primes with $p=4 q+a$ for some $a \in \mathbb{Z}$. If $p \equiv 1(\bmod 4)$ then show that

$$
\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right) .
$$

6 (3 points) Let n be an integer. Show that if $p>3$ is a prime divisor of $n^{2}+3$ then $p \equiv 1 \bmod 3$.
7 (a) ($\mathbf{3}$ points) Let $d>0$ be a non-square integer. Show that if the simple continued fraction expansion of \sqrt{d} has period length 1 then $d=a^{2}+1$ where a is a non-negative integer.
(b) (3 points) Let d be a positive integer. Show that the simple continued fraction expansion of $\sqrt{d^{2}+1}$ is $[d ; \overline{2 d}]$.
(c) (2 points) Describe all solutions $(x, y) \in \mathbb{Z}^{2}$ of the equation $x^{2}-10 y^{2}=1$.

